博客
关于我
【Lintcode】266. Expect Distance
阅读量:214 次
发布时间:2019-02-28

本文共 955 字,大约阅读时间需要 3 分钟。

题目地址:

有个人困在了一个山洞 A A A,从山洞 A A A出发有两条路,一条路走 x x x千米,会回到山洞 A A A,另一条路走 2 2 2千米,会到山洞 B B B;从山洞 B B B出发也有两条路,一条路走 y y y千米,会到山洞 A A A,另一条路走 z z z千米会到山洞的出口 C C C。问他走出山洞的期望路程。他在山洞选择哪条路走的概率都是 1 2 \frac{1}{2} 21

X X X是从 A A A走到出口的距离, Y Y Y是从 B B B走到出口的距离,由条件期望公式得: E [ X ] = 1 2 ( x + E [ X ] ) + 1 2 ( 2 + E [ Y ] ) E [ Y ] = 1 2 ( y + E [ X ] ) + 1 2 z E[X]=\frac{1}{2}(x+E[X])+\frac{1}{2}(2+E[Y])\\E[Y]=\frac{1}{2}(y+E[X])+\frac{1}{2}z E[X]=21(x+E[X])+21(2+E[Y])E[Y]=21(y+E[X])+21z计算得: E [ X ] = 2 x + y + z + 4 E[X]=2x+y+z+4 E[X]=2x+y+z+4代码如下:

public class Solution {       /**     * @param x: the distance from cave A to cave A.     * @param y: the distance from cave B to cave B.     * @param z: the distance from cave B to exit C.     * @return: return the expect distance to go out of the cave.     */    public int expectDistance(int x, int y, int z) {           // write your code here.        return 2 * x + y + z + 4;    }}

时空复杂度 O ( 1 ) O(1) O(1)

转载地址:http://txcs.baihongyu.com/

你可能感兴趣的文章
MySql中给视图添加注释怎么添加_默认不支持_可以这样取巧---MySql工作笔记002
查看>>
Mysql中获取所有表名以及表名带时间字符串使用BetweenAnd筛选区间范围
查看>>
Mysql中视图的使用以及常见运算符的使用示例和优先级
查看>>
Mysql中触发器的使用示例
查看>>
Mysql中设置只允许指定ip能连接访问(可视化工具的方式)
查看>>
mysql中还有窗口函数?这是什么东西?
查看>>
mysql中间件
查看>>
MYSQL中频繁的乱码问题终极解决
查看>>
MySQL为Null会导致5个问题,个个致命!
查看>>
MySQL为什么不建议使用delete删除数据?
查看>>
MySQL主从、环境搭建、主从配制
查看>>
Mysql主从不同步
查看>>
mysql主从同步及清除信息
查看>>
MySQL主从同步相关-主从多久的延迟?
查看>>
mysql主从同步配置方法和原理
查看>>
mysql主从复制 master和slave配置的参数大全
查看>>
MySQL主从复制几个重要的启动选项
查看>>
MySQL主从复制及排错
查看>>
mysql主从复制及故障修复
查看>>
MySQL主从复制的原理和实践操作
查看>>